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he promise of deep learning is to discoverrich,
hierarchical models [2] that represent probability
distributinne nvar tha Kinde nf data encountere in artificial
‘i:teh ge icea icatitns,s has ‘uralir iges,aua
aveformscc iningspe n,ar .ymt innatural
‘agecor] a.Sofar,i mouctstriki  juccesses
dlearni 1aveinvo Idisc 1ini e2models,
usuz ythose tmapah -dime¢ iona, chsensc ,
inoutto aclass waisel [14, 2., These ...iking successes
have primarily been based on the backpropagation and
dropout algorithms, using piecewise linear units [19, 9, 10]
hich have a particularly well-behaved gradient . Deep
enerative models have had less of animpact, due to the
ficultyofar i ‘mgman tractable probabilistic
1putations atari nmaxi mlikelihood estimation
‘%; elatedst :i-s.anddue ¥ -ulty of leveraging
ure nefitso 2cew ‘linear its “egenerative
on Y“Wep ose: wgen tive -elestimation
proc. rethz deste, these ficultic

In the proposed adversarial nets framework, the generative
model is pitted against an adversary: a discriminative
delthatlea’ stodeterm.ewhe!’ 2arasi »Jleisn
mthemods ‘stributic orthedatadistt ition. The
erativerioc  anb¢ dughtofasanal »)jus?)a
mofconntern s { 1gtoproducefa :currency
juseit without ‘ect. ,whiletl liscr native
delisanalogous thep.lice,tr ._tod ctthe
ounterfeit currency. Competition in this game drives both
eams to improve their methods until the counterfeits are
indistiguishable from the genuine articles.
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his framework can yield specific training algorithms for
many kinds of model and optimization algorithm. In this

rtic ~wee ore -specic 1sewhe the; ‘rative
mod '‘ene ess plesby ssinc random nc

hroo an iay~roercepti  ai. thediscrimin. =
mod ;als muli ‘erper >tron Wereferto thi

per 4casc sadve arialne  Inthisc’ se,\vecan

ronboth . elsus. _ caly .. highl __ccacsful
backpropagation and dropout algorithms [17] and sample

rom the generative model using only forward propagation.

loapprox ateinference or Markov chains are ner.essary.

2 Related wor

rnativetodirec Igra ‘calmo swithle :ent
esareundirect graf .almod with latent]l
es,suchasres! ieu”nltzmanr ici. es(RBI
], deepBoltzm:i mac es(DE ;)[2e]andtt
ousvarients. Tl ntera »>nswi 1suchmode
are rep csenied as thic prcduct o, uninSanaiized poteiiua
unctions, normalized by a global summa- tion/integration
over all states of the random variables. This quantity (the
partition function) and its gradient are intractable for all but
he most trivial instances, although they can be estimated
yMa ~wcl 1Mc =Carlo (MCMC) methods. Mi<ing
>ses gn anty >lem forlearning algorithms that
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eepbelieft work: )BNs) [16] are hybrid model s

ntaininga aleur. ‘ectedlayer and sev- eral directed
layers. While a fast approximate layer-wise training|

riterion exists, DBNs incur the computational diffic ulties
associated with both undirected and directed models.

Alternative criteria that do not approximatec¢ oun “*he
log-likelihood have also been proposed,suc  ssco ‘
matching [18] and noise-contrastive estimat (NC (13]
Both of these require the learned probability nsity to be|
analytically specified up to anormalizationc stant. Note
hat in many interesting generative modelsw  several
layers of latent variables (such as DBNs and DBMs), it
is not even possible to derive a tractable unnormalized
probability density. Some models such as denoising auto-
encoders [30] and contractive autoencoders have learning
rules very similar te scuic matching applied to RBMs. In
NCE, asinthisv rk,adisci minative training criterionis
employedtofi jenerative model. However, rather than
ittingasepar  discriminative model, the generative
modelitselfis. dtodisc wunate generated datafrom
amples afixed. ‘isedist ition.

Because NCE uses a fixed noise distribution, learning
lows dramatically after the model has learned even an
anpbroximately eorrect distribution over a small subset of
)serve variable. .
4
y,s¢ techniquesdc ~lve defining a
biliv  istribution explicitly, b. athertraina
ative achinetc dre vsample from the desired
ic ..2ution. 1nis arcac.nuas the advantage that
uch machines can be designed to be trained by back-
propagation. Prominent recent work in this areaincludes

. gener restc sticn vork (G€ ) framework[5],
hich extends generaiized denoising auto-encoders [4]:

both can be seen as defining a parameterized Markov

chain, i.e., one learns the parameters of amachine

that performs one step of a generative Markov chain.

Compared to GSNs, the adversarial nets framework does

not require a Markov chain for sanipling.

Because adversarial nets do not ri:quire feedback
loops during generation, they are hetter able to leverage
piecewise linear units [19, 9, 10], v'hich improve the
performance of backpropagation but have problems with
unbounded activation when used ina feedback loop. More
recent examples of training a gencrative machine by back-
propagating into it include recent work on auto-encoding
ariational Bayes [20] and stochastic backpropagation

sari. ets

The adversarial modeling framework is most
straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s
distribution pg over data x, we define a prior on input noise
iriables pz(z),t**.enrep: ~sentama-pingt. atas; eas
(z; g),wher .isadiffer tiab’ unctionrepres¢ 2d
yamultilayy erceptron h; ameters g.We o
sfineasect multilayet rc  onD(x; d)that tput:
singlescila. '(x)repres st orobabil that ame
omthe itara.“erthar .g.Wetro."Dtor . imizz e
probability of assigning the correct label to both training
examples and samples from G.

In the next section, we present a theoretical analysis of
adversarial nets, essentially ~=cw=~ thc* *he training
criterion allows one toreco\ er the  1ta ge nerating
distributionas Gand D aregivene ugh capacity, i.e., in
the non-parametric limit. See Figt  1for aless formal,
more pedagogical explanationof approach.In
practice, we mustimplementthe« 1e using aniterative,
numerical approach. Optimizing L 1o completion in the
inner loop of training is computationally prohibitive, and
on finite datasets would result in overfitting. Instead, we
alternate between k steps of optimizing D and one step
of optimizing G. This results in D being maintained near
its optimal solution, so long as G changes slowly enough.
This strategy is analogous to the way that SML/PCD [31,
29] training maintains samples from a Markov chain from
one learning step to the next in order to avoid burningin
a Markov chain as part of the inner loop of learning. The
procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient
for G to learn well. Early in learning, when G is poor, D can

ectsamples hhigk nfidenc bec jethey:s 2
clearly different from the training data. In this case, log(1 -

D(G(z))) saturates. Rather than training G to minimize log(1
—D(G(2z))) we can train G to maximize log D(G(z)). This
objective function results in the same fixed point of the
dyn2mics of G and D b 't provides miich stronaer gradients
arly inlee ning.

Theore ilResults
N

The generator G implicitly defines a probability distribution
pg as the distribution of the samples G(z) obtained when
z pz. Therefore, we would like Algorithm 1to converge

0 agood estimator of pdata, if given enough capacity
ar. [traii  3time heresul'softhi ‘ectionarec ein,
anon-pe: netric tting,2.g.wen 3sentamc |with
““finiteca, ityhy udyingcorver, ceinthe cer
~ ability nesity ctions.

(| neriments

e. ainedadve rrial nets an arange of datasets
including MNIST[23], the Toronto Face Database (TFD)
[28], and CIFAR-10 [21]. The generator nets used a
mixture of rectifier linear activations [19, 9] and sigmoid
activations, while the discriminator net used maxout
[10] activations. Dr ‘pout [17] was applied in training the
discriminator net.  ile our theoretical framework permits

he use of dropout. 'other noise at intermediate layers
of the generator,we ‘dnoise as the input to only the
bottommost lziyer of \  jenerator network. We estimate
probability of thetests  lataunder pg by fitting a
Gaussian Farzen window 1o the samples generated with G
and reporting the log-likelihood under this distribution.

The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error
of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset,

ith adifferent chosen using the validation set of each

old.On TFD, was cross validated on each fold and mean

log-likelihood on each fold were computed. For MNIST

e compare against other models of the real-valued
(rather than binary) version of dataset. of the Gaussians

as obtained by cross validation on the validation set.
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likelihood has parameters. Essentially, one can use adversarial
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aling frame- works. accelerated greatly by divising better methods for
yre is no explicit coordinating G and D or determining better
t be synchronized distributions to sample z from during training.
G must not be
order to avoid “the This paper has demonstrated the viability of the adversarial
5 too many values modeling framework, suggesting that these research
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