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1 Introduction

The promise of deep learning is to discover rich, 
hierarchical models [2] that represent probability 
distributions over the kinds of data encountered in artificial 
intelligence applications, such as natural images, audio 
waveforms containing speech, and symbols in natural 
language corpora. So far, the most striking successes 
in deep learning have involved discriminative models, 
usually those that map a high-dimensional, rich sensory 
input to a class label [14, 22]. These striking successes 
have primarily been based on the backpropagation and 
dropout algorithms, using piecewise linear units [19, 9, 10] 
which have a particularly well-behaved gradient . Deep 
generative models have had less of an impact, due to the 
difficulty of approximating many intractable probabilistic 
computations that arise in maximum likelihood estimation 
and related strategies, and due to difficulty of leveraging 
the benefits of piecewise linear units in the generative 
context. We propose a new generative model estimation 
procedure that sidesteps these difficulties. 

In the proposed adversarial nets framework, the generative 
model is pitted against an adversary: a discriminative 
model that learns to determine whether a sample is 
from the model distribution or the data distribution. The 
generative model can be thought of as analogous to a 
team of counterfeiters, trying to produce fake currency 
and use it without detection, while the discriminative 
model is analogous to the police, trying to detect the 
counterfeit currency. Competition in this game drives both 
teams to improve their methods until the counterfeits are 
indistiguishable from the genuine articles.
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This framework can yield specific training algorithms for 
many kinds of model and optimization algorithm. In this 
article, we explore the special case when the generative 
model generates samples by passing random noise 
through a multilayer perceptron, and the discriminative 
model is also a multilayer perceptron. We refer to this 
special case as adversarial nets. In this case, we can 
train both models using only the highly successful 
backpropagation and dropout algorithms [17] and sample 
from the generative model using only forward propagation. 

No approximate inference or Markov chains are necessary.

2 Related work

An alternative to directed graphical models with latent 
variables are undirected graphical models with latent 
variables, such as restricted Boltzmann machines (RBMs) 
[27, 16], deep Boltzmann machines (DBMs) [26] and their 
numerous variants. The interactions within such models 
are represented as the product of unnormalized potential 
functions, normalized by a global summa- tion/integration 
over all states of the random variables. This quantity (the 
partition function) and its gradient are intractable for all but 
the most trivial instances, although they can be estimated 
by Markov chain Monte Carlo (MCMC) methods. Mixing 
poses a significant problem for learning algorithms that 
rely on MCMC [3, 5].

Deep belief networks (DBNs) [16] are hybrid models 
containing a single undirected layer and sev- eral directed 
layers. While a fast approximate layer-wise training 
criterion exists, DBNs incur the computational difficulties 
associated with both undirected and directed models.

Alternative criteria that do not approximate or bound the 
log-likelihood have also been proposed, such as score 
matching [18] and noise-contrastive estimation (NCE) [13]. 
Both of these require the learned probability density to be 
analytically specified up to a normalization constant. Note 
that in many interesting generative models with several 
layers of latent variables (such as DBNs and DBMs), it 
is not even possible to derive a tractable unnormalized 
probability density. Some models such as denoising auto-
encoders [30] and contractive autoencoders have learning 
rules very similar to score matching applied to RBMs. In 
NCE, as in this work, a discriminative training criterion is 
employed to fit a generative model. However, rather than 
fitting a separate discriminative model, the generative 
model itself is used to discriminate generated data from 
samples a fixed noise distribution. 

Because NCE uses a fixed noise distribution, learning 
slows dramatically after the model has learned even an 
approximately correct distribution over a small subset of 
the observed variables.

Finally, some techniques do not involve defining a 
probability distribution explicitly, but rather train a 
generative machine to draw samples from the desired 
distribution. This approach has the advantage that 
such machines can be designed to be trained by back-
propagation. Prominent recent work in this area includes 

the generative stochastic network (GSN) framework [5], 
which extends generalized denoising auto-encoders [4]: 
both can be seen as defining a parameterized Markov 
chain, i.e., one learns the parameters of a machine 
that performs one step of a generative Markov chain. 
Compared to GSNs, the adversarial nets framework does 
not require a Markov chain for sampling. 

Because adversarial nets do not require feedback 
loops during generation, they are better able to leverage 
piecewise linear units [19, 9, 10], which improve the 
performance of backpropagation but have problems with 
unbounded activation when used ina feedback loop. More 
recent examples of training a generative machine by back-
propagating into it include recent work on auto-encoding 
variational Bayes [20] and stochastic backpropagation 
[24].

3 Adversarial nets

The adversarial modeling framework is most 
straightforward to apply when the models are both 
multilayer perceptrons. To learn the generator’s 
distribution pg over data x, we define a prior on input noise 
variables pz(z), then represent a mapping to data space as 
G(z;θg), where G is a differentiable function represented 
by a multilayer perceptron with parameters θg . We also 
define a second multilayer perceptron D(x; θd) that outputs 
a single scalar. D(x) represents the probability that x came 
from the data rather than pg. We train D to maximize the 
probability of assigning the correct label to both training 
examples and samples from G. 

In the next section, we present a theoretical analysis of 
adversarial nets, essentially showing that the training 
criterion allows one to recover the data generating 
distribution as G and D are given enough capacity, i.e., in 
the non-parametric limit. See Figure 1 for a less formal, 
more pedagogical explanation of the approach. In 
practice, we must implement the game using an iterative, 
numerical approach. Optimizing D to completion in the 
inner loop of training is computationally prohibitive, and 
on finite datasets would result in overfitting. Instead, we 
alternate between k steps of optimizing D and one step 
of optimizing G. This results in D being maintained near 
its optimal solution, so long as G changes slowly enough. 
This strategy is analogous to the way that SML/PCD [31, 
29] training maintains samples from a Markov chain from 
one learning step to the next in order to avoid burning in 
a Markov chain as part of the inner loop of learning. The 
procedure is formally presented in Algorithm 1.
In practice, equation 1 may not provide sufficient gradient 
for G to learn well. Early in learning, when G is poor, D can 

reject samples with high confidence because they are 
clearly different from the training data. In this case, log(1 − 
D(G(z))) saturates. Rather than training G to minimize log(1 
− D(G(z))) we can train G to maximize log D(G(z)). This 
objective function results in the same fixed point of the 
dynamics of G and D but provides much stronger gradients 
early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution 
pg as the distribution of the samples G(z) obtained when 
z  pz. Therefore, we would like Algorithm 1 to converge 
to a good estimator of pdata, if given enough capacity 
and training time. The results of this section are done in 
a non- parametric setting, e.g. we represent a model with 
infinite capacity by studying convergence in the space of 
probability density functions.

5 Experiments

We trained adversarial nets an a range of datasets 
including MNIST[23], the Toronto Face Database (TFD) 
[28], and CIFAR-10 [21]. The generator nets used a 
mixture of rectifier linear activations [19, 9] and sigmoid 
activations, while the discriminator net used maxout 
[10] activations. Dropout [17] was applied in training the 
discriminator net. While our theoretical framework permits 
the use of dropout and other noise at intermediate layers 
of the generator, we used noise as the input to only the 
bottommost layer of the generator network. We estimate 
probability of the test set data under pg by fitting a 
Gaussian Parzen window to the samples generated with G 
and reporting the log-likelihood under this distribution. 

The reported numbers on MNIST are the mean log- 
likelihood of samples on test set, with the standard error 
of the mean computed across examples. On TFD, we 
computed the standard error across folds of the dataset, 
with a different σ chosen using the validation set of each 
fold. On TFD, σ was cross validated on each fold and mean 
log-likelihood on each fold were computed. For MNIST 
we compare against other models of the real-valued 
(rather than binary) version of dataset. of the Gaussians 
was obtained by cross validation on the validation set. 

content aware fill | 
astroturfing | gan | 
dark pr | face swap | 
image phylogeny | 
d i g i t a l 
forensics | 
dissimilarity calculation | 



This procedure was intro- duced in Breuleux et al. [8] and 
used for various generative models for which the exact 
likelihood is not tractable [25, 3, 5]. Results are reported 
in Table 1. This method of estimating the likelihood has 
somewhat high variance and does not perform well in high 
dimensional spaces but it is the best method available to 
our knowledge. Advances in generative models that can 
sample but not estimate likelihood directly moti

6 Advantages and disadvantages

This new framework comes with advantages and 
disadvantages relative to previous modeling frame- works. 
The disadvantages are primarily that there is no explicit 
representation of pg (x), and that D must be synchronized 
well with G during training (in particular, G must not be 
trained too much without updating D, in order to avoid “the 
Helvetica scenario” in which G collapses too many values 
of z to the same value of x to have enough diversity to 
model pdata), much as the negative chains of a Boltzmann 
machine must be kept up to date between learning steps. 
The advantages are that Markov chains are never needed, 
only backprop is used to obtain gradients, no inference 
is needed during learning, and a wide variety of functions 
can be incorporated into the model. Table 2 summarizes 
the comparison of generative adversarial nets with other 
generative modeling approaches.

The aforementioned advantages are primarily 
computational. Adversarial models may also gain some 
statistical advantage from the generator network not 
being updated directly with data exam- ples, but only with 
gradients flowing through the discriminator. This means 
that components of the input are not copied directly 
into the generator’s parameters. Another advantage of 
adversarial net- works is that they can represent very 
sharp, even degenerate distributions, while methods 
based on Markov chains require that the distribution be 
somewhat blurry in order for the chains to be able to mix 
between modes.

7 Conclusions and future work

This framework admits many straightforward extensions:

1. 	 A conditional generative model p(x | c) can be 
obtained by adding c as input to both G and D.
2. 	 Learned approximate inference can be performed 
by training an auxiliary network to predict z given x. This 
is similar to  the inference net trained by the wake-sleep 
algorithm [15] but with the advantage that the inference net 
may be trained for a fixed generator net after the generator 
net has finished training.

3.	 One can approximately model all conditionals 
		  p(xS |x S) where S is a subset of the indices of x by
		  training a family of conditional models that share 
		  parameters. Essentially, one can use adversarial 
		  nets to implement a stochastic extension of 
		  the deterministic MP-DBM [11].

4. 	 Semi-supervised learning: features from the 
		  discriminator or inference net could improve 
		  performance of classifiers when limited labeled 
		  data is available.

5. 	 Efficiency improvements: training could be 
		  accelerated greatly by divising better methods for 
		  coordinating G and D or determining better 
		  distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial 
modeling framework, suggesting that these research 
directions could prove useful.
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Artificial intelligence and machine learning capabilities are growing
at an unprecedented rate. These technologies have many widely beneficial applications, 
ranging from machine translation to medical image analysis. Countless more such 
applications are being developed and can be expected over the long term. Less 
attention has historically been paid to the ways in which artificial intelligence can be used 
maliciously. This report surveys the landscape of potential security threats from malicious 
uses of artificial intelligence Artificial intelligence and machine learning capabilities are 
growing at an unprecedented rate. These technologies have many widely beneficial 
applications, ranging from machine translation to medical image analysis. Countless more 
such applications are being developed and can be expected over the long term. Less 
attention has historically been paid to the ways in which artificial intelligence can be used 
maliciously. This report surveys the landscape of potential security threats from malicious 
uses of artificial intelligence  technologies, and proposes ways to better forecast, prevent, 
and mitigate these threats. We analyze, but do not conclusively resolve, the question of 
what the long-term equilibrium between attackers and defenders will be. We focus instead 
on what sorts of attacks we are likely to see soon if adequate defenses are not developed.
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We present a novel approach for real-time facial reenactment of a monocular target video 
sequence (e.g., Youtube video). The source sequence is also a monocular video stream, 
captured live with a commodity webcam. Our goal is to animate the facial expressions of 
the target video by a source actor and re-render the manipulated output video in a photo-
realistic fashion. To this end, we first address the under-constrained problem of facial 
identity recovery from monocular video by non-rigid model-based bundling. At run time, 
we track facial expressions of both source and tar- get video using a dense photometric 
consistency measure. Reenactment is then achieved by fast and efficient deformation 
transfer between source and target. The mouth interior that best matches the retargeted 
expression is retrieved from the target sequence and warped to produce an accurate fit. 
Finally, we convincingly re-render the synthesized target face on top of the corresponding 
video stream such that it seamlessly blends with the real-world illumination. We 
demonstrate our method in a live setup, where Youtube videos are reenacted in real time.
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